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Abstract:  A concise, five-step total synthesis of UK-I,  a novel bis(benzoxazole) metabolite of 
Streptomyces sp. 517-02, was accomplished. The methyl ether of UK- 1 was also synthesized in 3 steps 
using the same methodology. Both syntheses are accomplished by the sequential construction of two 
benzoxazole rings derived from 3-hydroxyanthranilic acid. Copyright © 1996 Elsevier Science Ltd 

UK-1, an antitumor metabolite produced by Streptomyces sp. 517-02, was first isolated and characterized 

in 1993 by Tanignchi and co-workers. 1"2 UK-1 is a structurally unique bis(benzoxazole) in which the 2-position 

of one benzoxazole is joined to the 4-position of a second benzoxazole r ing)  UK-1 shows moderate cytotoxic 

activity against B 16, HeLa and P338 ceils, but does not inhibit the growth of Gram-positive or Gram-negative 

bacteria, yeast, or fungi. ~ The structure of UK-1 was assigned based on IR, UV, NMR spectroscopy and 

chemical derivatization. 2 However, no total synthesis of UK-1 has previously been reported. We set out to 

synthesize UK- 1 in order to confwm the assigned structure and to provide the basis for the production of analogs 

of this biologically interesting natural product. 
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UK-1 
Our first approach to the synthesis of UK-1 relied on the sequential construction of the benzoxazole rings 

followed by deprotection of the phenol hydroxyl group. Because the methyl ether of UK-1 (Me-UK-1) had 

been synthesized from UK- 1 as part of the structural characterization studies, we chose a methyl ether as the 

phenol protecting group. Me-UK- 1 was particularly attractive as a penultimate target, since it would also serve 

as additional proof of structure as well as provide an analog for our biological studies. The condensation of 3- 
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hydroxyanthranilic acid (la) with o-anisoyl chloride, followed by direct treatment of the condensation products 

with para-toluenesulfonic acid (TsOH) under reflux in xylenes gave the benzoxazole-4-carboxylic acid 3a in 

83% yield (Scheme 1). 4 Condensation of the acid 3a with methyl 3-hydroxyanthranilate 5 (lb) gave the amide 

4a. 6 Treatment of the amide 4a with TsOH afforded Me-UK-1, identical in all respects to that synthesized from 
• , • 7 UK-1,2 in nearly quanutauve yield. 
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S c h e m e  1. (a) 2-benzyloxybenzoyl chloride, benzene, pyridine, lh; 79% (b) 230 °C, lh; 66% (c) 5M NaOH, 
H2OFFHF, 60 °C, 1 h; 83% (d) o-anisoyl chloride, pyridine, benzene, lh (e) TsOH, xylenes, 140 °C, 2h; 83% 
(from 1=,) (f) (COCI)2, CH2CI 2, lh, then lb, CH2CI2, pyridine, lh ;4a, 59%; 4b, 45% (g) TsOH, xyienes, 
140 °C, lh; UK-1, 99%; Me-UK-1, 96%. 

Attempts to cleave the methyl ether functionality of Me-UK-1 were unsuccessful. The use of standard 

cleavage conditions (BBr 3, NaI/DMF, TMSI) gave mixtures of products due to competitive cleavage of one or 

both of the benzoxazole rings. Faced with the inability to affect the deprotection of Me-UK- 1, we turned to the 

benzyl protecting group for the phenol hydroxyl group• Our first approach to the synthesis of the benzyl ether 

of UK-1 followed the same reaction sequence used to synthesize Me-UK-1. The condensation of 3- 

hydroxyanthranilic acid (la) with 2-benzyloxybenzoyl chloride 8 followed by treatment with TsOH gave only 

trace amounts of the desired acid 3b. This reaction was complicated by the unexpected cleavage of the benzyl 

ether moiety during the TsOH cyclodehydration step. 



201 

The inability to synthesize the prerequisite acid 3b via a TsOH-catalyzed cyclocondensation forced us to 

look at other methods of benzoxazole synthesis. One of the most common methods involves the thermal 

cyclodehydration of acylated 2-aminophenols. 9 The reaction of the ester lb  5 with 2-benzyloxybenzoyl chloride 8 

gave the monoacylated 2-aminophenol 2. 6 Heating amide 2 to 230 °C under argon afforded the benzoxazole 

ester, which was hydrolyzed with aqueous NaOH to give the acid 3b in good yield, t° Condensation of the acid 

3b with methyl 3-hydroxyanthranilate (lb) afforded in the amide 4b. 6 We found that treatment of 4b with 

TsOH affects both the cyclocondensation and the deprotection of the benzyl ether to afford UK- 1 directly in 

nearly quantitative yield. 7 The IR, 1H NMR, 13C NMR, MS, and UV/VIS spectra of synthetic UK-1 are 

identical with the reported data. 2 

In conclusion, we have developed an efficient route for the synthesis of UK-1 and Me-UK-1. By 

straightforward modifications of this route, analogs of UK-1 can be prepared. Work directed towards the 

synthesis of these analogs and the detailed study of the mode of action of UK- 1 are now in progress, i t 
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